Received: November 30, 1988; accepted: April 21, 1989

SYNTHESIS OF NEW FLUORINATED AMPHIPHILES R_F-CH₂CH₂CONH₂ AND

R_F-(CH₂)_n-CH-(CH₂)_m-R_H BY PHOTOAMIDATION OF THE CORRESPONDING OLEFINS I
CONH₂

M. GAUTIER, I. RICO **and A. LATTES**

Laboratoire des IMRCP, UA CNRS No. 470, Universite Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cédex (France)

SUMMARY

We describe the synthesis of new fluorinated amphiphiles R_F-CH₂CH₂CONH₂ and R_F (CH₂)_n-CH(CONH₂)-(CH₂)_m-R_H (R_F = C₄F₉, C₆F₁₃, C₈F₁₇, C₁₀F₂₁; n⁻= 0,1,2; $m = 0.1$; $R_H = C_A H_0$, $C_B H_{17}$, $C_{10} H_{21}$) by photoamidation of the corresponding **olefins in tert-butanol. The different regioselectivities observed are discussed and interpreted.**

INTRODUCTION

Considerable research, both fundamental and applied has been devoted to long chain fluorinated amphiphiles. We will only mention here a few of the many studies carried out to date.

- segregation phenomena between these derivatives and the corresponding hydrogenated ones [1,2]

- applications based on their surfactant properties, formation of emulsions, foams, etc. [3-53

In this study we describe the synthesis of two new series of molecules with an amide group as polar head.

1 - with a single fluorinated chain R_F-CH₂-CH₂-CONH₂

2 - with a fluorinated and a hydrogenated chain R_F-(CH₂)_n-CH(CONH₂)(CH₂)_m-R_H; **n = 0,1,2; m = 0,l.**

They were synthesized by photoamidation of the corresponding olefins R_F-CH=CH₂ and R_F-(CH₂)_m-CH=CH-R_H in tert-butanol [6].

0022-1139/89/\$3.50 **CE**lsevier Sequoia/Printed in The Netherlands

In the case of the hydrogenated olefins, this reaction has been extensively investigated by Elad and Rockach [7-9 1 **and Ollivier and Leibovici [lo]. It involves a radical chain reaction, initiated by the photoreduction by formamide of acetone excited to the triplet state.**

$$
\frac{Initialization}{3} \text{CH}_3\text{COCH}_3 \xrightarrow{h\nu \rightarrow 1} \text{CH}_3\text{COCH}_3 \xrightarrow{\ast} \text{CH}_3\text{COCH}_3 \xrightarrow{\ast}
$$
\n
$$
3 \text{CH}_3\text{COCH}_3 \xrightarrow{\ast} + \text{HCONH}_2 \xrightarrow{h\nu \rightarrow (CH_3)_2\text{CH}^{*}\text{OH} + \text{'}\text{CONH}_2}
$$

Propagation	R - CH=CH-R' + 'COMH ₂	R - CH'-CH-R'
$+ R - CH-CH'-R'$		
$+ R - CH-CH'-R'$		
$R - CH - CH-P'$		
$R - CH-P'$		
$R - CH-P'$		
$CONH_2$		
$CONH_2$		
$R - CH-CH'-R'$		
$R - CH-CH'-R'$		
$R - CH-CH'-R'$		
$R - CH-P'$		

Termination Radical recombination 2 'CONH2 _3 (CONH2)2 ethane diamide or oxamide R -CH'-CH-R' + 'CONH2 d R-CH-CH-R' I I **CONH2 CONH2CONH2 alkyl succinamide** 2 $\left(\text{CH}_{3}\right)_{2}$ C'OH \longrightarrow $\left(\text{CH}_{3}\right)_{2}$ -COH-COH- $\left(\text{CH}_{3}\right)_{2}$

Secondary products can be formed via telomerization of the olefin: R-CH'-CH-R' I
CONH₂ **R-CH=CH-R'** CHR' CONH₂ etc
|
'CHR **telomer 2-l**

RESULTS

Method of Elad and Rockach

For the synthesis of the derivatives with both a single fluorinated chain and those with a fluorinated and hydrogenated chain, the method described by Elad and Rockach was selected [8,9]. This consists of irradiating fraction containing a mixture of the olefin and formamide in the presence of acetone at 300 nm. The fractions of the mixture are introduced successively into the reaction mixture in order to limit the secondary reaction mentioned above. The mixture is made homogeneous by addition of tert-butanol.

At the end of the reaction, the tert-butanol, the acetone and the excess formamide are eliminated by evaporation under reduced pressure.

This method which works well with hydrogenated olefins could not be used for the olefins R_F-CH=CH₂ and R_F-(CH₂)_n-CH=CH-R_H. Only the olefin C₄F₉-CH=CH₂ led to the product with an amide terminal at a yield of 4%. The olefins R_F -CH=CH₂ with longer chains (R_F) are insoluble in the reaction mixture. With the mixed olefins R_F-(CH₂)_n-CH=CH-R_H, which are soluble in **the reaction mixture, no reaction apart from some production of oxamide and secondary telomers took place.**

Modification of the method for fluorinated olefins

The perfluorinated olefins R_F-CH=CH₂ can be dissolved to make a **homogeneous solution in a large excess of tert-butanol (lo-fold more dilute than normal). Radical chain reactions are not normally favored in such** dilute media, although in the case of the derivatives R_F-CH=CH₂ and R_F-**(CH2)n-CH=CH-RH, amidation occurred. This was probably because the secondary reactions were relatively unfavored in such a dilute medium. In fact only small amounts of the oxamide were isolated under these conditions.** In **addition, the method could be simplified by mixing all the reactants together at once.**

The results after 48 h irradiation (300 nm, 30°C) are listed in Table I. The yields given are for the products isolated. The regioisomers a and b were not separated. The regioselectivities were determined by GLC, 'H NMR and mass spectroscopy (cf. experimental part).

TABLE 1 Amides synthesized in tert-butanol, at high dilution

The yields were satisfactory in view of the low reactivity of the corresponding olefins, especially that of the R_F-CH=CH₂ derivatives [11].

Regioselectivity of amidation of olefins R_F-CH=CH₂

In general, the radical addition reactions are governed by a complex set of factors which include polar and steric effects as well as the relative stabilities of the radicals involved in the reaction. i) Polar effects

The carbamoyl radical 'CONH₂ is markedly electrophilic. Writing its **structure in the resonance forms (keeping the free electron on the attacking carbon atom):**

It **can be seen that the carbon atom retains a partial positive charge.** If **polar effects predominate, the addition reaction would take place on the a**

carbon to the fluorinated chain RF+ \$H= CH . **This was not, however, observed.** \mathbb{R}^m

ii) Steric effects

On the other hand, approach of the carbamoyl radical is favored on the S carbon which is less hindered than the a atom.

Addition R_F-CH=CH₂ + 'CONH₂ - R_F-'CH-CH₂CONH₂ **iii) Stability of the radicals**

Moreover, the radical formed R_FICHCH₂CONH₂ is more stable than the radical R_F-CH(CONH₂)-'CH₂ which would be formed by attack on the a carbon. **Thus steric effects and radical stability act in concert outweighing polar effects.**

However, we have neglected the transfer reaction in the above arguments.

 $\frac{r_{\text{r}}}{r_{\text{r}}}\cdot\text{C}$ H-CH₂CONH₂ + HCONH₂ -----> R_FCH₂CH₂CONH₂ + \cdot CONH₂

In fact **the presence of large amounts of formamide would argue in favor of a fast transfer reaction and a predominance of the addition reaction.**

Regioselectivity of amidation of olefins R_F-(CH₂)_m-CH=CH-R_H

 $1 -$ Case of olefin C_8F_{17} -CH-CH-C₁₀H₂₁

Compared to the terminal olefins R_F -CH=CH₂, the donor effect of the R_H **alkyl chain of the mixed olefin C8F17- CH= CH-C1CH21 will tend to favor attack on the β carbon, whereas considerations of charge would tend to favor amidation on the a carbon, which was not in fact observed.**

On the other hand, the perfluorinated chain has a greater steric hindrance than the hydrogenated chain due to the large size of the fluorine atoms and the greater conformational mobility of these substituents. Steric effects will thus favor addition to the S carbon atom. Addition

R_F-CH=CH-R_W + 'CONH₂ - → R_F-'CH-CH-R_W I **CONH2** R_E-CH=CH-R_H + 'CONH₂ -----> R_E-CH-'CH-R_H **CONH2**

In **this case, the relative stability of the radicals formed is not readily estimated.**

In summary, the results obtained for photoamidation of C₈F₁₇-CH=CH-C₁₀H₂₁ **in tert-butanol indicate a predominant role for steric effects, accounting** for the preponderance of the isomer with the amide group next to the R_H **chain (regioselectivity = 7.71).**

2 - Case of olefins R_F-CH₂-CH=CH-R_H

i) Although the attractive effect of the fluoroalkylated chain is attenuated by the CH₂ group in the a position to the double bond, attack at **this position would still be favored on polar considerations. This was not, however, observed.**

ii) The relative stabilities of the radicals formed are similar: RF-CH2-'CH-R and RF-CH2-CH-'CH-RH I H CONH₂

iii) Steric effects will also tend to favor addition at the 9 position. They are, however, attenuated by the CH₂ group between the double bond and **the perfluorinated chain. Attack on the S carbon will be less favored, which is born out by the lower regioselectivities (1.22-2.89 versus 7.71** for C_8F_{17} -CH=CH- $C_{10}H_{21}$).

CONCLUSION

We describe a method for photoamidation of highly fluorinated olefins R_F-CH=CH₂ and R_F-(CH₂)_m-CH=CH-R_H. The corresponding fluorinated amides with **a single fluorinated chain, or with a fluorinated and a hydrogenated chain were thus obtained.**

The amidation by formamide in dilute condition in tert-butanol led to attack by the carbamoyl radical on the carbon terminal for the olefins R_F-CH=CH₂, and on the carbon bearing the alkyl group for the mixed olefins **(hydrogenated and fluorinated chains). This regioselectivity.was due to a predominance of steric over polar effects.**

The amides synthesized are being evaluated as fire extinguishing foams in collaboration with Atochem [12]. These amides are readily hydrolyzed, producing the corresponding carboxylic acids and carboxylates. The surfactant properties of these compounds are also under investigation [13].

EXPERIMENTAL

The IR **spectra were recorded on a Perkin-Elmer 683 apparatus. The** frequencies of the characteristic bands are expressed in cm⁻¹.

The proton and fluorine NMR spectra were recorded on Bruker AM-300-WB machine at 300 MHz using TMS as internal reference for the ¹H and CF₃COOH **as external reference for the 19 F measurements. The chemical shifts are expressed in ppm with respect to the reference, and the signals characterized by s (singlet), d (doublet), t (triplet) and m (multiplet).**

Melting points were measured on a Koffler block.

Elemental analyses of the synthesized products were carried out in the CNRS facilities (Lyon, France) and expressed as percentages of required (r) and experimental (f) values (Tables II **and** III),

An Intersmat IGC 120 **FL was used for the GLC analyses, with the following operating conditions:**

- SE 30 column with 10% silicone on chromosorb PAW 80/100 mesh (1.5 m long)

- **input pressure nitrogen vector** : **1.3 at**
- **detector temp.** (FID) : 290°C
- **temperature program** : **30-300°C at lO"C/min.**

The mass spectra of the compounds, separated by GLC (as above), were recorded on a Nermag RlO-1OA apparatus using desorption and chemical ionization.

Compounds

The fluorinated olefins (99% pure) were kindly supplied by Atochem. Acetone and formamide, and tert-butanol (Aldrich) were also 99% pure.

Photoamidation reaction

After degassing with argon, the following mixture was irradiated at 300 nm in a Rayonet RP 600 for two days: 0.012 mole olefin, 35.3 ml of formamide (0.89 mole), 5 ml of acetone (0.068 mole) and 95 ml of tertbutanol (1.01 mole) [150 ml for C₁₀F₂₁CH=CH₂ and 105 ml for $C_8F_{17}CH=CHC_{10}H_{21}$].

The oxamide produced during the reaction was filtered off, and the filtrate evaporated to dryness under vacuum. The residue was taken up in 5 ml of water and recrystallized in water. The product was dried over P_2O_5 . **The following amides were obtained as white powders.**

1,1,1,2,2,3,3,4,4-Nonafluorohexane-1-carboxamide C_AF₉C₂H_ACONH₂ 1 **MW = 291; MP = 115°C; GLC = 1 peak at 140°C** IR = 3400 **(N-H free); 3220 (N-H coupled); 1690 (C=O); 1230 (C-F) NMR ^H, CD₃COCD₃: 2.66(4p, m, CH₂α and β CO); 6.54-7.12(2p, m, N-H) NMR ⁻⁻F, CD₃COCD₃ = -5.75(3f, t, CF₃); -39.05(2f, m, CF₂αCH₂);** -49.94(2f, m, CF₂βCH₂); -50.55(2f, m, CF₂αCF₃).

1,1,1,2,2,3,3,4,4,5,5,6,6-Tridecafluorooctane-1-carboxamide C₆F₁₃C₂H₄CONH₂ 2 **MW = 391;** MP = 12O'C; GLC = 1 peak at 150°C IR = 3460 (N-H **free); 3200 (N-H coupled); 1670 (C=O); 1260 (C-F)** NMR ¹H, CD₃COCD₃: 2.66(4p, m, CH₂a and β CO); 6.54-7.11(2p, m, N-H) NMR ¹⁹F, $\overline{co}_3 \overline{coco}_3 = -5.46(3f, t, cr_3); -38.76(2f, m, cr_2aCH_2);$ $-46.31(2f, m, CF_2\beta CH_2; -47.28(2f, m, CF_2\gamma CH_2); -47.97(2f, m, CF_2\beta CF_2);$ $-50.60(2f, m, CF₂aCF₃)$.

1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-Heptadecafluorodecane 1-carboxamide C_8F_1 ₇ C_2H_4 CONH₂ $\underline{3}$ **MW = 491; MP = 14O'C; GLC = 1 peak at 160°C** IR = 3400 **(N-H free); 3200 (N-H coupled); 1670 (C=O); 1210 (C-F)** NMR $^{1}_{-H}$, CD₃COCD₃: 2.53(4p, m, CH₂a and β CO); 6.64-7.00(2p, m, N-H) NMR ¹⁹F, CD₃COCD₃ = -5.23(3f, t, CF₃); -38.50(2f, m, CF₂aCH₂); $-46.00(6f, m, CF_2); -46.83(2f, m, CF_2vCF_3); -47.68(2f, m, CF_2\beta CF_3);$ $-50.32(2f, m, CF₂aCF₃)$.

```
1,1,l,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,lO,lO-Uneicofluorododecane l-
carboxamide C10F2,C2H4CONH2 4 
MW = 591; MP = 142°C; GLC = 1 peak at 180°C 
IR = 3400 (N-H free); 3220 (N-H coupled); 1680 (C=O); 1210 (C-F) 
NMR <sup>1</sup>H, CD<sub>3</sub>COCD<sub>3</sub>: 2.55(4p, m, CH<sub>2</sub>a and \beta CO); 6.49-7.50(2p, m, N-H)
NMR <sup>19</sup>F, CD_3COCD_3 = -5.31(3f, t, CF_3); -38.57(2f, m, CF_2aCH_2);-45.94(10f, m, CF<sub>2</sub>); -46.92(2f, m, CF<sub>2</sub>yCF<sub>3</sub>); -47.77(2f, m, CF<sub>2</sub>BCF<sub>3</sub>);
-50.43(2f, m, CF<sub>2</sub>aCF<sub>3</sub>).
```
1,1,1,2,2,3,3,4,4-Nonafluoropentadecane 6 and 7-carboxamides 5

C₄F₀C₂H₄-CH-C₈H₁₇ + C₄F₀-CH₂-CH-C₀H₁ (a) CONH₂ (b) CONH₂ **MW = 417; MP = 8O'C; GLC = double peak at 220°C IR = 3400 (N-H free); 3200 (N-H coupled); 1660 (C=O); 1220 (C-F)** MR ¹H, CD₃COCD₃: 0.99(3p, t, CH₃); 1.40(14p, m, CH₂); 2.34(1p, m, CH); 2.85(4p, m, CH₂a and β CF₂); 6.51-7.07(2p, m, N-H) NMR ¹⁹F, $CD_3COCD_3 = -5.75(3f, t, CF_3)$; -39.00(2f, m, CF_2aCH_2); -48.82(2f, m, CF₂BCF₃); -50.53(2f, m, CF₂aCF₃).

```
1,1,1,2,2,3,3,4,4,5,5,6,6-Tridecafluorotridecane 8 and 9-carboxamides 5
```
C6F13C2H4-CH-C4Hg + C6F13-CH2-!H-C5Hll $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ **MW = 461; MP = 78'C; GLC = double peak at 170°C IR = 3390 (N-H free); 3200 (N-H coupled); 1670 (C=O); 1210 (C-F)** NMR ¹H, CD₃COCD₃: 0.98(3p, t, CH₃); 1.41(6p, m, CH₂); 2.4(1p, m, CH); 2.9(4p, m, CH₂a and β CF₂); 6.65-7.44(2p, m, N-H) NMR ¹⁹F, CD₃COCD₃ = -5.09(3f, t, CF₃); -37.25(2f, m, CF₂aCH₂); -45.99(2f, m, CF₂BCH₂); -47.06(2f, m, CF₂yCH₂); -47.89(2f, m, CF₂BCF₃); $-50.38(2f, m, CF₂aCF₃)$.

1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-Heptadecafluoropentadecane 10 and 11-carboxamides 7

C8F17-C2H4-CH-C4Hg and C8F17-CH2-CH-C5Hll (a) CONH2 (b) CONH2 MW = 591 MP = 88°C; GLC = double peak at 190°C IR = 3420 (N-H free); 3200 (N-H coupled); 1670 (C=O); 1200 (C-F) NMR ¹H, CD₃COCD₃: 1.00(3p, t, CH₃); 1.43(6p, m, CH₂); 2.3(1p, m, CH); 3.00(4p, m, CH₂a and β CF₂); 6.55-7.24(2p, m, N-H) NMR ¹⁹F, CD₃COCD₃ = -5.33(3f, t, CF₃); -38.54(2f, m, CF₂aCH₂); -46.11(6f, m, CF₂); -46.94(2f, m, CF₂yCF₃); -47.69(2f, m, CF₂BCF₃); $-50.41(2f, m, CF₂aCF₃)$.

1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-Heptadecafluoroeicosane 9 and lo-carboxamides 8

C8F17-CH2-CH-C10H21 and C8F17-CH-CllH23 (a) CONH2 (b) CONH2 MN = 631 MP = 92°C; GLC = 2 peaks at 220°C and 245°C IR = 3420 **(N-H free); 3200 (N-H coupled); 1670 (C=O); 1200 (C-F)** NMR ¹H, CD₃COCD₃: 0.99 (3p, t, CH₃); 1.40(18p, m, CH₂); 2.40(1p, m, CH); 2.96(2p, m, CH₂aCF₂); 6.50-7.19(2p, m, N-H) **NMR** ^{19}F , $CD_3COCD_3 = -5.31(3f, t, CF_3)$; $-37.32(2f, m, CF_2aCH_2)$; $-46.11(6f, m, CF_2); -46.94(2f, m, CF_2)$; $-47.82(2f, m, CF_2)$; $-50.43(2f, m, CF₂dCF₃)$.

Determination of the regioselectivity -For amides C8F17 -CH2-FH-C10H21 and C8F17-~H-CH2-C10H21 (i3) derived from the olefin C₈r₁₇-CH=CH-C₁₀H₂₁ **CGNH2 (!?)**

GLC of the mixture of the two amides gave two closely separated peaks (a minor one at 220°C and a major one at 245'C). The ratio of the areas of the $two = 7.7:1.$

¹H NMR of the mixture of the two isomers a and **b** showed the almost exclusive presence of \underline{a} (α CH₂ to the CF₂). The major peak (245°C) was thus attributed to isomer a and the minor peak to isomer b.

For amides
$$
R_F-C_2H_4-CH-R_H
$$
 and $R_F-CH_2-CH-R_H$ $(5-7)$
 $COMH_2$ (a) $COMH_2$ (b)

GLC of the mixture of the two isomers produced two closely separated peaks with similar intensities, except for olefin C₄F₉-CH₂-CH=CH-C₈H₁₇ for **which the ratio of areas was 2.89:1 (5)**

For these amides, proton and fluorine NMR was unable to identify or determine the relative proportions of the two isomers.

In the case where the ratio of the two GLC peaks was more selective (2.89:1 for C₄F₉-CH₂CH=CH-C₈H₁₇) mass spectrometry was used to analyze the **mixture of the two amides after separation by GLC:**

C4Fg-CH2CH2-YH-C8H17 and C4Fg-CH2-FH-CgHlg (5) (a) CONH2 (b) CONH2

The parent peak for the two isomers is $M^+ = 417$. The peak $(M+1)^+ = 418$ is **also observed. The breakages are essentially the same for both isomers** with successive losses of CH₃ and nCH₂.

TABLE II Elemental analyses of the fluorinated amides

No.	Empirical formula		c	н	N	F
$\overline{1}$	$C_7H_6NF_9O$		28.87	2.06	4.81	56.76
		f	28.87 2.49		7.20	50.89
$\overline{2}$	$c_9H_6NF_{13}O$	r	27.62 1.53		3.58	63.17
		f	27.72 1.46		3.45	63.02
$\overline{3}$	$c_{11}H_6NF_{17}O$	r	26.88	1.22	2.85	65.78
		f	25.95	1.28	2.98	60.47
$\overline{4}$	$C_{13}H_{6}NF_{21}O$	r	26.40	1.02	2.37	67.51
		f	28.52 1.69		3.58	61.74

TABLE III **Elemental analyses of the mixed amides**

No.	Empirical formula		C	н	N	F
$\frac{5}{2}$	$C_{16}H_{24}NF_{9}0$	r	46.04	5.76	3,36	41.01
		f	46.36 5.88		3.56	40.09
$\underline{6}$	$C_{14}H_{16}NF_{13}0$	r	36.44 3.47		3.04	53.58
			37.20 3.67		3.89	53.08
$\overline{1}$	$C_{16}H_{16}NF_{17}O$	r	34.22 2.85		2.50	57.57
		f	34.28 2.75		3.45	55.19
$\underline{\mathbf{8}}$	$C_{21}H_{26}NF_{21}O$	r	39.07	4.03	2.17	50.08
		f	39.89 4.07		2.55	49.72

The two derivatives can also be differentiated by consideration of the various MacLafferty rearrangements

 \sim

Isomer a, product 5

Isomer b, product 5

430

These rearrangements were supported by the spectral data:

The following comnents can be made on these results: i) the rearrangement b₁ is much less favored than b₂ ii) rearrangement a₂ is more favored than a₁ **iii) the major isomer (a) leads to the peak at the higher temperature.**

For the other derivatives of the mixed olefins R_F-CH₂-CH=CH-R_H we assumed **that the isomers (a) had the higher retention times.**

ACKNOWLEDGMENT

We would like to thank Atochem for supporting this work, and for the generous gift of the olefins R_F-CH=CH₂ and R_F-CH=CH-R_H.

REFERENCES

1 P, Mukerjee and K.J. Mysels, Coll.Disp. Micellar Behavior, K (19701 239. 2 D.G. Kruger, S. Rajan and C.A. Kingsbury, J. Sol. Chem., g(1982) 719, 3 H. Kunieda and K. Shinoda, J. Phys. Chem., &) (1976) 22, 2468. 4 K. Shinoda, M. Hato and T. Hajashi, J. Phys. Chem., 2 (1972) 6, 904. 5 I.J. **Lin, J. Phys. Chem., B (1972) 14, 2019.** 6 **7 8 g 10 11 12 13** The olefins R_F-CH=CH₂ and R_F-CH=CH-R_H were kindly supplied by Atochem. **The olefins RF-CH2-CH=CH-RH were prepared in the laboratory as described in B. Escoula, I. Rico, J.P. Lava1 and A. Lattes, Synth. Cotnn. 5 (1985) 1, 35. D. Elad, Angew. Chem. Intern. Edit., 5 (1966) 2, 255.** D. Elad and J. Rockach, J. Org. Chem., 29 (1964) 7, 1855. D. Elad and J. Rockach, J. Org. Chem., 30 (1965) 3361. **J. Ollivier and C. Leibovici, Tetrahedron, 27 (1971) 55, 15. R. Bertocchio, Socidte Atochem, personal communication. M. Gautier, I. Rico, A. Lattes, R. Bertocchio Brev. Fr. no 8 614 811, Application 10/24/86. M. Gautier, I. Rico, A. Lattes. R. Bertocchio Brev. Fr. no 8 702 009, Application 02/17/87.**